\begin{tabbing} (\%S\% \\[0ex]$\backslash$p.\=let x = get\_distinct\_var `x' p \+ \\[0ex]in let n = get\_var\_arg `n` p \\[0ex] \\[0ex]in let S = get\_term\_arg `S` p \\[0ex]in let T = get\_term\_arg `T` p \\[0ex] \\[0ex]in let f = get\_term\_arg `f` p \\[0ex]in \\[0ex]As\=sert \+ \\[0ex](m\=k\_all\_term x T \+ \\[0ex]( \-\-\-\\[0ex]mk\_all\_te\=rm n S \+ \\[0ex](mk\=\_implies\_term \+ \\[0ex](mk\_equal\_term T (mk\_apply\_term f \-\-\\[0ex](mvt n)) (mv\=t x)) \+ \\[0ex](concl p)))) p) \- \end{tabbing}